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Learning from competitors poses a challenge for existing theories of reward-based learning, which assume that
rewarded actions aremore likely to be executed in the future. Such a learningmechanismwould disadvantage
a player in a competitive situation because, since the competitor's loss is the player's gain, reward might
become associated with an action the player should themselves avoid. Using fMRI, we investigated the neural
activity of humans competingwith a computer in a foraging task.We observed neural activity that represented
the variables required for learning from competitors: the actions of the competitor (in the player's motor and
premotor cortex) and the reward prediction error arising from the competitor's feedback. In particular, regions
positively correlated with the unexpected loss of the competitor (which was beneficial to the player) included
the striatum and those regions previously implicated in response inhibition. Our results suggest that learning
in such contexts may involve the competitor's unexpected losses activating regions of the player's brain that
subserve response inhibition, as the player learns to avoid the actions that produced them.
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Introduction

Learning from competitors is a critically important form of learning
for animals and humans. Animals must frequently compete for mates,
resources and social dominance, and outcomes can be critical for their
reproduction or even survival. Young animals often engage in play
fighting that is regarded as preparatory for their struggles in adult life
(Groos, 1898). To fully benefit from such play fighting, young animals
need to learn from their competitors' failures and successes.

This type of learning presents a challenge for existing neuropsy-
chological concepts and for the computational models associated with
them. Current understanding of animal and human reinforcement
learning rests on the assumption that rewarded actions aremore likely
to be executed in the future. This simple association between reward
and action appears less helpful in understanding the behavior of a
participant in a competitive situation (referred to here as the player).
From the player's perspective, an action by the competitor that results
in the competitor's loss provides a reward (de Bruijn et al., 2009).
However, this is counter to how the player should value the action
producing it, whenmaking their own decisions in the future. Standard
reinforcement learningmodels thus appear inadequate in competitive
contexts, since they suggest a competitor's unexpected losses would
produce reward activity favouring actions better avoided. Similarly,
a competitor's unexpected gains would not provide the types of
immediate reward likely to encourage the player to repeat the actions
that produced them.

The challenge posed by learning from competitors becomes clearer
when we consider the neuro-computational models of reinforcement
learning. The models assume that the player maintains estimates of
values of individual actions, which we denote by mi. After selecting
action i, the corresponding action value is modified proportionally to
the player's prediction error (Dayan and Abbott, 2001).

mi ←mi + ηδp; where δp = rp−mi ð1Þ

In Eq. (1), η is a learning rate, and player's prediction error δp is the
difference between reward rp obtained by the player and the expected
reward mi. Thus for example, if the reward obtained is larger than
predicted, then δpN0 and, according to Eq. (1), the value of the chosen
action is increased. It has been proposed that δp is represented in the
firing rate of dopaminergic neurons (Montague et al., 1996) and
strong experimental support has been provided for this theory
(D'Ardenne et al., 2008; Schultz et al., 1997; Tobler et al., 2005;
Zaghloul et al., 2009). It has been further proposed that mi are
encoded in strengths of synaptic connections which are modified
according to the level of dopamine as in Eq. (1) (Montague et al.,
1996). This is supported by observation of the effects of dopamine on
synaptic plasticity in the striatum (Reynolds et al., 2001; Reynolds and
Wickens, 2002), where midbrain dopaminergic neurons predomi-
nantly converge. Such a proposed mechanism is also supported by
observations that the activity in reward-related regions measured
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with fMRI is correlated with δp (Daw et al., 2006; McClure et al., 2003;
O'Doherty et al., 2004).

Developing a hypothesis for how a player learns from their
competitor's feedback is less straightforward. This may occur by
updating estimates of action values in a manner analogous to that for
their own feedback. That is, when a competitor selects action i and
receives reward rc, the player may update their estimate of the action
value as follows:

mi ←mi + ηδc; where δc = rc−mi ð2Þ

We refer to δc as the competitor's prediction error. Note that the
competitor's prediction error is low when the competitor chooses an
unsuccessful action, but such outcome is beneficial for the player.
Hence, it may seem unlikely that δc is encoded in the firing rate of
dopaminergic neurons. A recent neuroimaging study (de Bruijn et al.,
2009) suggests instead that dopaminergic neurons may exhibit an
opposite pattern of response and show high activity for the
competitor's losses. Hence, we define egocentric prediction error as
δe=−δc. Note, however, that if the egocentric prediction error is
encoded in the firing rate of dopaminergic neurons, then action values
mi should not be modified proportionally to δe, because this would
increase values of actions that gave the competitor low rewards, as
mentioned at the start of this paper.

To understand the mechanisms by which the human brain learns
from competitors, we performed an experiment in which players
competed with a computer in a task in which they could gain points
by selecting one of four bandits on each trial (Fig. 1). We tested the
following hypotheses. First, we compared the ability of players to
learn from their competitors' outcomes relative to the outcomes of
their own actions. Despite the challenge that learning from compe-
titors presents for current models, we hypothesized that the players
would be able to use the information provided by the competitor's
Fig. 1. Task design a) Illustration of the timeline within a trial (see Materials and methods f
bandit box on each trial.
feedback to guide their own choices, because this ability provides
advantage in competitive situations.

Second, we investigated how the brain represents variables
required for learning from competitors, in particular, those represent-
ing the competitor's actions. Since our task involved making different
choices with different hands, we compared the activities in hand-
specific regions when the player performed an action with those
generated when observing the competitor. Among regions included
in the mirror neuron system (MNS), premotor regions and primary
motor cortex are likely to be hand-specific. There is considerable
evidence for primary motor cortex activation in response to observed
action (Caetano et al., 2007; Cochin et al., 1999; Hari et al., 1998). For
example, it responds to observed hand movement in the hemisphere
contralateral to the hand image provided as stimulus (Touzalin-
Chretien and Dufour, 2008). On this basis, we hypothesised that
when players observed their competitor's action, they would activate
premotor and motor cortex in the same regions activated as when
making the action themselves, i.e. contralateral to the handedness of
the action.

Third, on the basis of previous studies of reinforcement learning
(reviewed above), we hypothesized that, when the player is learning
from their own outcomes, ventral striatal activity would be positively
correlated with the players' own prediction error (δp).

Fourth, we tested two opposing hypotheses: that the prediction
error (either the competitor's prediction error (δc) or the egocentric
prediction error (δe)) would be encoded in the ventral striatum when
observing the competitor.

Fifth, on the basis that our results would support the latter
hypothesis (as was the case) we predicted activity correlated with δe
in regions previously linked to response inhibition, since the potential
reward provided by the competitor's loss can only be reaped by
suppressing the action that gave rise to it. The key regions of interest
were those most consistently identified in the literature: the right
or description of trial). b) Example of payoffs that would be received by choosing each
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inferior frontal gyrus (IFGr) (Aron et al., 2007; Aron and Poldrack,
2005, 2006; Cai and Leung, 2009; Coxon et al., 2009; Garavan et al.,
2006; Garavan et al., 1999; Konishi et al., 1998; Leung and Cai, 2007;
Pliszka et al., 2006; Rubia et al., 2001; Rubia et al., 2003) and right
middle frontal gyrus (MFGr) (Aron et al., 2007; Cai and Leung, 2009;
Garavan et al., 2006; 1999; Pliszka et al., 2006; Rubia et al., 2001).

Our sixth hypothesis, also assuming that the player would be
monitoring the competitor's losses, predicted activity related to the
value of the competitor's losses would be found in the posterior
medial frontal cortex (pMFC), a region associated with detecting
errors irrespective of whether these are self-made errors or made by a
competitor(de Bruijn et al., 2009).

Finally, we investigated the neural correlates of the player's
exploratory behavior i.e. decisions not to exploit the bandit with the
greatest mi. With regard to activity correlated with exploratory
decision-making, we hypothesised activity in prefrontal cortex as
the region most implicated in the type of behavioral control required
for switching strategies (Daw et al., 2006; Miller and Cohen, 2001).

Our findings suggest that the player represents the competitor's
actions in a similar way to their own, with the competitor's unexpected
losses engaging the player's reward and response inhibition systems,
as they learn to avoid the actions that produced them.

Materials and methods

Participants

Players were 16 healthy participants between 20 and 34 years old
(8 male and 8 female, mean age 25.5/SD 3.8 years) who provided
written informed consent and were right handed as assessed by the
Edinburgh Handedness Inventory.

Task

The task was an adapted form of the 4-armed bandit task (Daw
et al., 2006), in which players alternated turns with a computer
competitor in selecting one of four bandits (see Fig. 1a). Four boxes,
representing the bandits, were displayed on the screen and players
were given 3 s to make a decision, with the time elapsed shown on
two bar indicators that were positioned symmetrically to the left and
right of centre. The player always began the game. He/she was asked
to indicate their choice of bandits by pressing one of two buttons held
in the left hand (for bandits 1 and 2) or right hand (for bandits 3 and
4). As soon as a bandit was selected, it would change color from purple
to red to indicate a decision had been made. At the end of the decision
window, the pay-out was displayed for another 3 s in the centre of the
bandit. This value then disappeared, the selected bandit returned to
purple and the background became slightly darker, to indicate that
the competitor was now playing. The computer competitor made a
selection within the next 3 s, at a randomly selected instant between
500 ms and 2000 ms from the beginning of the competitor's decision
window. As with the player's turn, the bandit selected by the com-
petitor changed color immediately, and the outcome of the compe-
titor's selection was revealed as soon as the decision window had
elapsed and this outcome was displayed for a further 3 s. The next
12 s trial then began immediately. Boxes in the centre of the screen
displayed total scores and bars on either side indicated the fraction of
decision window elapsed.

The payouts from ith bandit were generated as in the study of Daw
et al. (2006). They were positive integers between 1 and 100. They
were drawn from a Gaussian distribution with mean μi and standard
deviation σo=4, and rounded to the nearest integer. After each trial,
the means for each i diffused in a decaying Gaussian random walk:

μi ← λμi + 1−λð Þθ + v: ð3Þ
In Eq. (3), decay parameter λ was set at 0.9836, decay centre θ set
at 50 and diffusion noise v was sampled from a Gaussian distribution
with mean zero and standard deviation σd=2.8 (see Fig. 1b for an
example of μi used).

The competitor's behavior followed an e-greedy model (Sutton
and Barto, 1998). According to this model, the competitor kept track
of themost recently obtained reward for each bandit. On each trial the
competitor selected, with probability (1−e), the bandit whose most
recent reward was highest or, with probability e, made a random
selection (from a uniform distribution). The competitor's exploit/
explore behavior was set to provide a suitably challenging level of
difficulty for the participating players to compete with. Preliminary
trials helped to inform this decision, and these were carried out in a
simulated scanner to help acclimatize players to the scanning
environment. In these trials, all players experienced the task with
the competitor's e set at 3 levels of 0.5, 0.25 and zero probability of
making a random selection, permutated with 3 instantiations of the
above process for generating bandit values. Players experienced 75
trials in each condition, with all 16 players winning in the e=0.5
condition, 9 players winning in the e=0.25 condition and only 1
player succeeding in overcoming their competitor when e was set at
zero. The e=0.25 setting was, therefore, selected for the competitor
in the imaging study, since the performance of the competitor at this
setting best matched that of the players.

Procedure

Players were unpaid volunteers but, to ensure they remained
competitively engaged with the competitor, an inducement of £50
cash was offered to the player who, on any one day of scanning, beat
the competitor by the greatest margin. (The scanning took place over
three days, and so three of these awards were made.) Before entering
the scanner, the players were shown the money they could win.

In the scanner, each player experienced two consecutive 30 min
sessions, each consisting of 150 trials, in which they attempted to
outperform their competitor and maximise their lead. Two instantia-
tions of mean bandit payoffs μi (obtained from Eq. (3)) were used to
generate bandit values (as in Daw et al., 2006), and their presentation
order was balancedwithin and between the two subgroups formed by
gender.

Imaging procedure and pre-processing of image data

Imaging was performed with a 1.5 T whole-body magnetic-
resonance imager (Phillips Gyroscan Intera with quadrature head
coil). The head of the playerwas strappedfirmly but comfortably in the
head coil. Attached to the head coil was a mirror through which could
be viewed the projection of a computer screen, positioned beyond
the bore of the imager. A T2* sensitive (BOLD) echo-planar imaging
sequence was used for functional imaging with TR=3000 ms, TE=
50 ms. For each of the two30 min sessions experiencedby eachplayer,
600 3D volume acquisitions were obtained. Each 3D volume ac-
quisition consisted of 32 contiguous slices, 64×64matrix, with a voxel
size of 3×3×3 mm3, in an oblique axial plane that was rotated 20°
with respect to the anterior commisure–posterior commisure line to
enable whole-brain coverage. The beginning of each 12 s trial was
automatically initiated by the scanner.

Processing of data was performed off-line using SPM5 (Wellcome
Department of Cognitive Neurology, UCL, London) using the compu-
tational facilities of the Advanced Computing Research Centre, Bristol
University. Data from each player was first realigned to the first
scan and “unwarped” using a model for susceptibility-by-movement
interactions to remove the residual movement related variance
(Andersson et al., 2001). The data for each player was then spatially
normalised to the Montreal Neurological Institute template. Images
were smoothed with a Gaussian kernel filter using a relatively large
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12 mm FWHM, reflecting our intention tomake group inferences with
16 subjects (Mikl et al., 2008). A temporal high-pass filter (128 s) was
applied to remove low-frequency extraneous effects, such as cardiac
and respiratory artefacts.

Computational models

In this study of competitive learning, we considered the following
5 variants of a neuro-computational model for estimating values of
prediction errors on individual trials.

The first variant is given by Eqs. (1) and (2) and additionally
assumes that at the start of a block of trials all action values are equal
tom0. Thus, this variant has two free parametersm0 and learning rate
η. The free parameters of all variants of the model are summarized in
Table 1. The second variant is similar to the first, but additionally
assumes that all action values decay with time, i.e. at the end of each
trial all action values are updated according to:

mi ← λmi + 1−λð Þθ ð4Þ

In Eq. (4), λ denotes the rate of decay (the lower λ the faster
decay), and θ denotes the value to which the action values converge
(if the corresponding action is not chosen). The third variant is the
Kalman filter model used by Daw et al. (2006) to describe learning in a
similar task. Essentially, it assumes that the learning rate η is not
constant within a block, but varies depending on the participant's
estimates of how noisy and variable the rewards are. Since this variant
did not provide the best fit to experimental data we do not present it
in detail here (detailed description in Daw et al., 2006).

The fourth variant is similar to the second, but additionally
assumes that the learning rates for player and competitor feedback in
Eqs. (1) and (2) have different values ηp and ηc. Finally, the fifth
variant is similar to the first, but assumes different learning rates for
player and competitor feedback.

For all the variants we assume that probability of choosing action i
depends on action values according to the softmax rule (that provided
best fit to behavioral data from a similar experiment by Daw et al.,
2006):

P ið Þ = exp βmið Þ

∑
4

j=1
exp βmj

� � : ð5Þ

In Eq. (5), β is a parameter controlling how deterministic the
choice is: If β=0, choices are made randomly, and the higher β, the
higher the probability of choosing the action with maximum mi. β is
an additional free parameter for all of the variants.

Fitting of behavioral data

We now describe how each of the variants was compared with
behavioral data. For each variantwewere seeking its parameter values
that provided best fit to the behavioral data. For each set of parameters
Table 1
Free parameters and Akaike Information Criteria (AIC) for the five variants of the
computational model considered. The additional parameters of variant 3 (Kalman filter)
denote: σ0 — initial estimate of standard deviation of action values,σ̂d andσ̂o — estimates
of σd and σo defined in Materials and methods section (under and above Eq. (3)).

Variant Free parameters AIC

1 m0, η 4884
2 m0, η , λ, θ 4358
3 m0, λ, θ , σ0, σ̂d , σ̂o 4392
4 m0, λ, θ , ηp, ηc 4353
5 m0, ηp, ηc 4883
we calculated mi on all trials on the basis of responses and feedback
in the experiment. An example of such a calculation is given in
Supplementary Table 1. Using thesemi, we calculated the probabilities
of selection of different action P(i) predicted by themodel for all trials.
Then we calculated the likelihood of participants' choices given the
model: If we denote the choicemade on trial t by ct, then the likelihood
of this choice given the model is equal to P(ct) computed from Eq. (5)
using mi estimated for this trial (see Supplementary Table 1). The
likelihood of data from T trials is given by:

L = ∏
T

t=1
P ctð Þ ð6Þ

Note that the likelihood L can be computed for any combination of
values of the model's parameters. Hence L is a function of the model's
parameters, and thus finding the parameters' values that provide best
fit to experimental data is equivalent to finding the maximum of
function L. We used the simplex optimization algorithm (Nelder and
Mead, 1965) to find values of parameters maximizing the likelihood
of Eq. (6). Initially, we tried to fit a separate model to each player (i.e.
only trials from a single player were included in the product of
Eq. (6)). However, this led to unreasonable estimates for the param-
eters (e.g. learning rates significantly above 1), which suggested that
the amount of behavioral data from a single player was not sufficient
to constrain the model. Hence, we followed the approach of Daw et al.
(2006) and fitted a single model to data from all players (i.e. trials
from all players were included in Eq. (6)) and set all parameters
constant across players except for β which was a free parameter for
each player.

Since different variants of the model have different numbers of
parameters, we compared the variants by computing the Akaike In-
formation Criterion (AIC) (Akaike, 1974)which “penalizes” the variants
with a large number of parameters k.

AIC = −2 log L + 2k ð7Þ

The values of AIC for all variants considered are listed in Table 1.
According to the Akaike criterion, variant 4 provided the best account
for the behavioral data. The parameters of variant 4 which provided
the best fit to behavioral data were: m0=53.3, λ=0.89, θ=54.1,
ηp=0.87, ηc=0.72.

Analysis of image data

In the statistical analysis, each trial was modelled with 4 time
points. The first two were the time of the selection made by the player
(arbitrarily set to be midway between beginning of the trial and the
response of the player signalling their selection — on average 208 ms
from the beginning of the trial) and the time of presentation of the
outcome (3 s after trial onset). The second two time points werewhen
the player observed their competitor's selection (as signalled by one
of the four bandits changing color) and the time of presentation of the
outcome of their competitor's decision.

The choice of regressors was motivated by the hypotheses stated
in the Introduction and these are listed in Table 2. Two analogous sets
of regressors were generated for the player's and competitor's turns
(regressors 1–5 and 6–10 respectively). The regressor for handedness
of decision characterised each player's selection in terms of the hand
used to make it, coded as 1 for left choices if it required the use of the
left hand (bandits 1 and 2) or −1 for right choices if it required the
right hand (bandits 3 and 4). In the case of the competitor's selection,
this was the hand that would have been used by the player if he/she
had made it. The choice type regressor classified decisions as either
exploitative when the bandit with maximum mi was chosen or as
exploratory if an alternative was chosen. Choice probability was
included in the regressors because it can reflect choice confidence,



Fig. 2. Regions of overlap for representation of player's and competitor's left-handed actions,
identified by conjunction null analysis of players' activation when they made left versus
right decisions and when observing left versus right selections made by their competitor.
Conjoined activation is shown that survives pb0.001 uncorrected (yellow) and, to illustrate
full extent of activation, also pb0.005 uncorrected (red).

Table 2
Time points and values of regressors.

Regressor Time point Regressor's values

1 Player's choice Midpoint between start of
trial and choice of the player

1 for left choices, −1
for right choices

2 Choice type 1 for exploitative, −1
for exploratory

3 Choice probability P(ct)
4 Player's reward Player's outcome revealed rp
5 Prediction error δp
6 Competitor's choice Choice of the competitor

revealed
1 for left choices, −1
for right choices

7 Choice type 1 for exploitative, −1
for exploratory

8 Choice probability P(ct)
9 Competitor's reward Competitor's outcome

revealed
rc

10 Prediction error δc (which is equal to −δe)
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which may have been lower on exploratory trials. Inclusion of choice
probability reduced the possibility that confidence-related changes in
activation were reported for exploratory trials.

We used statistical parametric mapping to identify brain regions
where activity was significantly correlated with these regressors.
Regressors were convolved with the canonical hemodynamic re-
sponse function and entered into a regression analysis against each
player's fMRI data using SPM5. In this way, for each player, contrast
images were created for activity correlated with each regressor. For
inference at group level, these contrasts were subjected to a second-
level analysis in which random effects group statistics were
generated. T1 anatomical images were co-registered to mean func-
tional EPI images for each player and normalised using EPI image
normalisation parameters. The t-maps from the functional analysis
were overlaid onto an average of the normalised structural image
across players, with localisation of activity carried out with reference
to an anatomical atlas (Duvernoy, 1999). Unless otherwise stated, we
report activation in hypothesised regions that survived a height
threshold of pb0.001 uncorrected with an extent threshold of 10
voxels (Forman et al., 1995). For the sake of completeness, activities
beyond hypothesised regions are reported in figures and supplemen-
tary tables according to the same criteria. Where unhypothesised
activities warrant consideration in the text, they are accompanied by a
more conservative test (pb0.0001 and 10 voxel extent threshold) to
guard against Type 1 errors. To test hypotheses regarding striatal
activity in relation to prediction error (δp, δc, δe), a region of interest
was defined within the nucleus accumbens (NAcc), on the basis of
recent anatomical and functional studies (Neto et al., 2008) and
confirmed by our anatomical images.

To investigate whether brain regions for the player's own actions
and those of the competitor were detectable in conjunction, a
separate factorial model at the second level was carried out. This
model included regression fits for handedness of decision for both
player and competitor. Conjunction null analyses (Friston et al., 2005)
of regression fits for left versus right decisions, and right versus left
decisions, were carried out with players' and competitor's data in
conjunction. A region of interest (ROI) analysis was carried out on
these two conjunction analyses, centred on the peak voxel in the
player's motor cortex when observing the competitor's actions.

Results

Behavioral results

To compare the ability of players to learn from their competitors'
feedback relative to their own, we estimated parameters of the
reinforcement learningmodel (Eqs. (1) and (2)) from behavioral data.
As described in detail above, we tested 5 variants of the model that
differed in respect of which parameters were allowed to vary
(between trials or conditions), and which were held constant. The
model that provided the best fit to the behavioral data was variant 4,
which allowed the learning rates η for player and competitor feedback
to differ. These rates were calculated as equal to η=0.87 for the
player's (Eq. (1)) and η=0.72 for competitor's feedback (Eq. (2)). The
similarity between these two values implies that players learnt only
slightly less from the competitor's feedback than from their own.

Neural representation of the player's and competitor's actions

The regions with higher activity when the player was making left
versus right choices included hypothesised regions involved with the
control of left hand movement: A cluster of increased activity was
observed extending from right somatosensory regions into primary
motor cortex and another cluster was observed in left cerebellum.
Complimentary activations in the opposite hemispheres were
observed when the player was making right, compared with left
choices (see Supplementary Table 2 and Supplementary Fig. 1a).

We next sought activities in premotor and motor regions when
players observed their competitor's selections. Regions with higher
activity when the player observed the competitor making left choices
versus right choices included the right primary motor cortex and
dorsal premotor regions. Analogously, for observing the competitor's
right versus left choices, activity was identified in left primary motor
cortex (Supplementary Table 3 and Supplementary Fig. 1b). Thus, as
we hypothesized, players' encoding of their own and the competitor's
actions generated a similar pattern of activity. To confirm this
similarity we performed a conjunction analysis (see Materials and
methods). An ROI was defined by a 6 mm sphere centred on the peak
voxel activated in the players' motor cortex (precentral gyrus in left
and right hemispheres, −38 −22 62 and 38 −15 45 respectively)
when observing their competitor's actions. ROI analysis confirmed
statistically significant conjoined activity in this region for both the
players' own actions and for observing those of their competitor, when
these actions were both left (pFWE-corr=0.005) and right handed
(pFWE-corr=0.026). Fig. 2 shows the region of conjoined activation
(pb0.001 uncorrected) for left-handed decisions (which also shows
activity at pb0.005 uncorrected, in order to show extent of activation).

Activity related to player's feedback

No activity was significantly positively or negatively correlated
(pb0.001 uncorrected) with the magnitude of the points won by the
player. In the dorsal striatum, activity correlated with δpwas observed
(pb0.001 uncorrected) in caudate regions (Supplementary Table 4).
To determine whether ventral striatal activity was correlated with δp
(as hypothesized in the Introduction on the basis of previous studies),

image of Fig.�2


Fig. 3. Regionof theposteriormedial frontal cortex (pMFC, centre at x=−2, y=39, z=35)
negatively correlated with the points won by the competitor (pb0.001 uncorrected).
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we performed an ROI analysis on the NAcc.We defined two spheres of
4 mm radius at stereotactic coordinates (+/−10, 5.5, −4) derived
from Neto et al. (2008), and confirmed by our anatomical images.
This analysis revealed NAcc activity was correlated with δp in right
(pFWE-corr=0.001) and left (pFWE-corr=0.001) hemispheres.
Activity related to competitor's feedback

Positive correlation of activity with the points won by the
competitor did not reach threshold in any region of the brain but, as
hypothesised, negatively correlated activity was revealed in the pMFC
(Fig. 3, and Supplementary Table 5).

We wished to determine whether the activity indicative of
dopaminergic response encoded δc or δe when players observed
their competitor's feedback. To achieve this, we sought positive
correlation between striatal activity and these two prediction errors.
There were no brain regions where activity was positively correlated
with δc (pb0.001 uncorrected). The same ROI analysis as described
above revealed activity correlated with δe for the competitor's
outcomes reached significance (pFWE-corr=0.007) in the NAcc in the
right hemisphere. (Left NAcc activationwas not revealed as significant
in this analysis for either δc or δe). This suggests that the phasic
dopaminergic response encoded the egocentric prediction error.

Activity significantly correlated with δe (see Fig. 4 and Supple-
mentary Table 6) was found in regions involved in response inhibition
(hypothesised on the basis of their previous activation in tasks
involving response inhibition— see Discussion): IFGr, MFGr, cingulate
gyrus, globus pallidus pars externa, bilateral premotor cortex, left
insula, left inferior parietal lobule, right and left precuneus, and left
lateral orbitofrontal cortex (OFC). Unhypothesised activity (which
survived a more conservative threshold of pb0.0001 uncorrected)
was noted in right frontopolar cortex (FPC), left cuneus and right
parahippocampal gyrus.
Fig. 4. Activity correlatedwith the learning signal (δe— egocentric prediction error)when the
(y=6), showing activation in right inferior frontal gyrus (IFGr, centre at x=60, y=7, z=9),
(y=28) showing activation in right middle frontal gyrus (MFGr, centre at x=48, y=,29 z=
showing the activation in right frontopolar cortex (FPC, centre at x=34, y=62, z= −1) an
Activity related to player's exploration

We sought activity in frontal regions and identified two clusters of
activity with peaks in IFGr and dorso-lateral prefrontal cortex (DLPFC)
(Supplementary Table 7). Unhypothesised activity (surviving a more
conservative threshold of pb0.0001 uncorrected) was also observed
in three other regions: right precuneus, the substantia nigra and
subthalamic nucleus.

Discussion

Representation of the competitor's actions

When players observed their competitor's bandit selection, they
activated premotor and motor cortex in regions activated when
making the same selection themselves. Apart from supporting our
proposal for the role of action representation in competitive learning,
it is also notable that activation of these regions of the MNS occurred
without seeing any biological movement, and in response to decisions
that players knew were computer generated. This was predicted on
the basis of studies showing motor activation when actions are
suggested in ways other than through direct visual observation of a
movement. For example, it has been shown that primates activate
MNS when hearing the noise associated with an action but without
seeing it (Kohler et al., 2002). In our study, movement was suggested
only by the change in color of a bandit. However, it has been
demonstrated that static pictures suggestive of actions are sufficient
to generate motor activity in the observer when the goals of the
represented actions are understood, which would have been the case
here (Johnson-Frey et al., 2003). The fact that the stimulus exciting
motor activity was a signal from a computer, representing an action
which the player knows is not being biologically executed is, perhaps,
more surprising. Research has shown that an action such as biting can
produce MNS activity whether performed by human or dog, but not
barking — demonstrating that the motor system can be excited by an
observed action provided by another species, if it is in the repertoire of
the observer (Buccino et al., 2004). Our results demonstrate that
outcomes merely suggesting the virtual actions of an artificial agent
can also activate the mirror neuron system. In our task, the player
representing their own and the competitor's actions in a similar way
may support learning, by helping the player associate actions with
outcomes, irrespective of who performed them.

The MNS also includes the inferior parietal lobule and the IFG
(Rizzolatti and Craighero, 2004). Activity in both these regions,
however, when individuals were observing grasping actions, has been
revealed not to be hand-specific (Shmuelof and Zohary, 2006),
prompting suggestions of their possible sensitivity to aspects of the
task such as its meaning, complexity or relation to the observer's task.
player is observing the competitor's feedback (pb0.001 uncorrected): a) Coronal section
as well as premotor cortex (PMC) andmiddle temporal gyrus (MTG) b) Coronal section
32) as well as medial frontal gyrus (MeFG) and left insula c) Sagittal section (x=34)

d other regions including right premotor cortex (PMC).

image of Fig.�4
image of Fig.�3
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Hence, we were not expecting these regions to be activated in an
analysis based on handedness.

Activity related with magnitude of competitor's reward

Positive correlation of activity with the points won by the
competitor did not reach threshold in any region of the brain, while
negatively correlated activity was revealed in the posterior medial
frontal cortex. The results of de Bruijn et al. (2009), who studied
activations in response to the monitoring of errors by participants and
by their competitors/collaborators, showed this region to be active
regardless of who was making the errors. In our study, activity in this
region was not significantly negatively correlated with the players'
own magnitude of reward suggesting that, compared with their own
actions, players were monitoring the failure rather than the success of
their competitor.

The medial frontal cortex has been previously implicated in
reinforcement learning in three different ways (Rushworth, 2008;
Rushworth and Behrens, 2008). Firstly, it is thought to be involved
with the updating of action values and in mediating the impact of
past reinforcement history on the next choice made, so influencing
learning rate. Secondly, this region is thought important when an
exploratory action is generated and, thirdly, it is considered critical
when conflicting information in the immediate environment instructs
more than one possible response. In our study, despite the outcomes
of the competitor's choices always being positive in absolute value,
the player appears to be learning from the extent to which these
actions may be judged as errors (i.e. the extent to which the
competitor's outcomes are less than expected). Some “errors” by the
competitor in our study might be expected to carry increased
amounts of information that would justify a greater rate of
information update. For example, when the competitor makes a
random and low-scoring exploratory selection of a rarely sampled
bandit, this rare glimpse of the bandit's content might justify an
increase in learning rate. However, the pMFC activation observed in
this analysis is in response to poor outcomes of the competitor's
actions in absolute terms, irrespective of whether these provide new
information or, instead, are quite predictable. This suggests it may also
be attributable to increased conflict and the need to consider multiple
and exploratory responses, as when a previously rich bandit begins to
provide pay outs that become predictably low.

Inhibition and learning from competitors

Many regions where activity was correlated with δe were those
typically activated by tasks involving response inhibition: IFGr (Aron
et al., 2007; Aron and Poldrack, 2005, 2006; Cai and Leung, 2009;
Coxon et al., 2009; Garavan et al., 2006; Garavan et al., 1999; Konishi
et al., 1998; Leung and Cai, 2007; Pliszka et al., 2006; Rubia et al.,
2001; Rubia et al., 2003), cingulate gyrus (Garavan et al., 2006;
Garavan et al., 1999; Luna, 2004; Rubia et al., 2001; Rubia et al., 2003),
MFGr (Aron and Poldrack, 2005, 2006; Cai and Leung, 2009; Coxon et
al., 2009; Garavan et al., 2006; Garavan et al., 1999; Konishi et al.,
1998; Pliszka et al., 2006; Rubia et al., 2001), left insula (Garavan et al.,
2006; Leung and Cai, 2007), left inferior parietal lobule (Aron et al.,
2007; Garavan et al., 2006, 1999; Luna, 2004; Rubia et al., 2001; Rubia
et al., 2003), premotor cortex (Cai and Leung, 2009; Leung and Cai,
2007), right (Garavan et al., 2006) and left precuneus(Cai and Leung,
2009; Rubia et al., 2001) and globus pallidus pars externa (Frank et al.,
2004).

We propose two possible interpretations of this apparent
correlation of egocentric prediction error with activity in regions
associated with response inhibition (that are not mutually exclusive).
First, we propose that our results may support a model in which the
brain's response inhibition system is critically involved in learning
from the competitor's feedback. More specifically, if it becomes
apparent that the competitor's action has led to the competitor's loss,
the inhibition of this action is strengthened. In this model, the
component of value learnt from competitor's feedback is encoded
separately from the component of value learnt from the player's own
feedback, hence we refer to this model as the dual-valuemodel. In the
dual-value model, after competitor's feedback, mi are not modified
according to Eq. (2), but instead the strengths of synaptic connections
to regions involved in action inhibition are modified proportionally to
the level of dopamine. Let us denote the inhibition of action i by ni, and
assume that the probability of selecting action i depends on mi−ni
(i.e. the larger ni, the lower the probability of selecting action i). In the
dual-value model, ni are modified proportionally to the egocentric
prediction error, so that if the competitor's action produces a loss, it
will be inhibited more in the future.

ni ← ni + ηδe ð8Þ

Since in humans the dopaminergic neurons project not only to the
striatum but to almost entire cerebral cortex (Camps et al., 1989;
Cortes et al., 1989), in the dual-value model, ni are encoded in the
strengths of synaptic connections to regions involved in action
inhibition. The advantage of this model is that the synaptic weights
encoding ni are modified depending on the level of dopamine in a
similar manner as in the striatum (compare Eqs. (1) and (8)) and the
dual-value model relies on a knownmechanism of synaptic plasticity.
Thus, the model predicts neural activity correlated with δe in regions
related to response inhibition, as we observed in the experiment.

In the Supplementary content, we show that the dual-value model
predicts the same behavior as the model described in the Introduc-
tion, and hence these twomodels are indistinguishable on the basis of
our behavioral data. Furthermore, the dual-value model generates
exactly the same values of prediction errors as the model described in
the Introduction, hence if the dual-value model were used to generate
regressors for imaging analysis (listed in Table 2), the results of the
analysis would not change.

In the dual-value model, the components of value learnt from own
and competitor's feedback are encoded by two separate sets of
synapses. Analogous separate encoding of components of value was
demonstrated by Frank et al. (2004) who provided evidence that the
components of value learnt from positive and negative feedback are
stored in synapses of separate striatal neurons that then jointly
influence the choice. In the present context, the dual-value model
would predict that, at the time of player's choice, separate brain
regions should have activity correlated with mi and ni (Peter Dayan,
personal communication). Future experimental paradigms may
succeed in disentangling players' responses to the competitor's
feedback and their subsequent decision, allowing such a prediction
to be tested.

The second possible interpretation of the correlation between δe
and the activity of the response inhibition system is that this system
inhibits an automatic tendency for imitation of the competitor's
action. It would appear that processes linked to representing the
competitor's actions begin prior to the outcomes of a competitor's
decision being revealed, and that these processes are subsequently
inhibited when the competitor's actions have unfavourable results.
There is a widespread view that the MNS is crucially involved in
imitation (Brass and Heyes, 2005; Buccino et al., 2004; Heyes, 2001;
Iacoboni, 2005; Iacoboni and Dapretto, 2006; Rizzolatti, 2005;
Rizzolatti et al., 2001) and this neural representation of the
competitor's actions may form a critical part the player's preparation
to imitate. However, an alternative conceptualisation of the MNS
might restrict the role of such representation to processes merely
attributing unexpected loss to a particular action. The exact role of the
neural representation of the competitor's actions in the player's brain
cannot be determined from the present study, but would be an
interesting area for future research.
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Previous reports of a fronto-parietal network being involved with
movement inhibition have involved tasks with an explicit cue
triggering inhibitory control (e.g. the Go–No Go task). However,
both of the above interpretations of our data seem to suggest that a
similar network may be involved in inhibitory control in tasks where
only implicit information is provided (e.g. in our task, a poor outcome
of the competitor's action).

Other activity related with competitor's feedback

We have reported that the regions correlated with egocentric
prediction error included lateral OFC and FPC. Below we discuss
relationships between our results and results of other studies that
reported activity in these two regions.

The lateral OFC is thought to subserve the suppression of previously
rewarded responses in uncertain situations (Elliott and Dolan, 1999;
Iversen and Mishkin, 1970). In our task, we recorded left lateral OFC
activation correlated with δe. That is, OFC activation increased with
the degree of unexpectedly poor outcomes for the competitor, as the
desirability of suppressing previously rewarded responses from the
selectedbanditmight be expected to increase. At the same time, however,
unexpectedly low outcomes for the competitor increase the likelihood
that the player must plan an exploratory choice, and the posterior region
of the OFC activated in our analysis has also been implicated in the
excitement generated by risky choices(Elliott et al., 2000).

We also observed a cluster with activity correlated with δe in right
FPC and numerous studies that suggest FPC has a critical role when
human players switch between tasks, particularly when it is necessary
to hold information about one task in working memory (Braver et al.,
2003; Koechlin et al., 1999; Koechlin and Hyafil, 2007; Koechlin and
Summerfield, 2007; Ramnani and Owen, 2004). The unexpected failure
of a competitor's actionwould likely increase the player's consideration
of alternatives and could, therefore, be expected to increase activation of
this region. More specifically, a recent fMRI study involving a 2-armed
bandit task supports the role of FPC in coding the value of such
alternatives, in terms of their relative advantage (Boorman et al., 2009).
Our findings are also aligned with this proposed role for FPC, since the
relative value of all bandits alternative to the one selected increaseswith
positive δe. On this basis, the neural correlates of egocentric prediction
error in this region may relate to individual differences in players'
tendency to seek alternative selections to thosemadeby the competitor.
To explore such a relation (see Supplementary Fig. 2), we carried out a
post-hoc analysis and found δe related activity in FPC was positively
related to alternative behavior (r=0.53, p=0.034).

We also found activity correlated with δe in regions likely to be
involved with visual processing of stimuli (BA 17,18) and encoding of
information relating to outcomes (BA 35, parahippocampal gyrus (Liu
and Richmond, 2000)). We also observed activation of the cerebellum
which is not considered directly involved with response inhibition
(Thoma et al., 2008) but has been linked to more global preparation
associated with smooth and optimal performance of subsequent
motor and cognitive functions (Courchesne and Allen, 1997).

Activity related to player's exploration

Aprevious study (Dawet al., 2006) had employed a 4-armedbandit
task without a competitor. In that study, FPC and intraparietal sulcus
were preferentially active during the player's exploratory decisions. In
our study, as expected, activity associated with exploration was
observed in frontal regions although, rather than in FPC as observed
previously, this activity was more caudally situated with peaks in IFGr
and dorso-lateral prefrontal cortex (DLPFC). The difference in the
pattern of exploration-related activity between this previous study
and our own may arise from the competitor influencing the player's
selection strategy. In our experiment only 17% of players' selections
were exploratory whereas, when a similar task was played without a
competitor in the study of Daw et al., 36% of choices were exploratory.
In our task, in addition to their own exploratory selections, the player
could gain information about bandit values from the competitors'
exploratory selections. When available, this was a safer source of
information for players than their own exploratory decisions, which
might result in sampling a low-yielding bandit. (Indeed, there was a
negative correlation across participants between the proportion of
their selections that were exploratory and the total reward they
earned during the game, r=−0.74, pb0.001). In post-task interviews,
players spoke of the helpfulness of observing the competitor's
exploratory behavior, and commented that they sometimes allowed
their competitor to “take the risk” of additional information gathering.

Activity was also observed in the substantia nigra and subthalamic
nucleus, suggesting activation of an inhibitory network of IFGr, the
substantia nigra and subthalamic nucleus (Aron et al., 2007; Aron and
Poldrack, 2006). The subthalamic nucleus provides non-specific
inhibition of all motor programs (Mink, 1996) and there are two
possible explanations of its activity on exploratory trials. Firstly, the
subthalamic nucleus has been proposed to provide inhibition
proportional to the level of conflict in evidence supporting different
alternatives (Bogacz and Gurney, 2007; Frank, 2006), and one could
argue that players experienced high conflict on exploratory trials.
However, it is unlikely that this function of the subthalamic nucleus
was manifested in our experiment, because: (i) Other regions
associated with conflict (e.g. the anterior cingulate cortex (MacDo-
Donald et al., 2000)) were not significantlymore active on exploratory
trials. (ii) The subthalamic nucleus has been shown to be critical in
decisions between highly rewarding options rather than poor options
(Frank et al., 2007) but, in our study, players' exploratory choices
tended to occur after trials in which they had received lower rewards:
The average player's reward on their trials preceding their exploratory
selections (rp=59.8) was lower than those preceding their exploit-
ative selections (rp=71.5). Secondly, it has been shown that when the
current motor program is stopped, the subthalamic nucleus becomes
active due to the input it receives from cortical regions involved in
action inhibition including IFGr (Aron and Poldrack, 2006). It is likely
that the subthalamic nucleus provided such inhibition on exploratory
trials because: (i) IFGr had increased activity on exploratory trials. (ii)
In order to make exploratory selection it might be necessary to first
block the current motor program of selecting action with highest mi.

If the response inhibition system is involved in both learning from
competitors and exploration, then one could expect that the
activation in the response inhibition network in the competitor's
turn should predict the exploratory behavior in the player's
subsequent turn. Indeed, we observed that egocentric prediction
error was significantly higher before players' exploratory selections
than exploitative selections (unpaired t-test pb10−6).

We also observed increased DLPFC activity for players' exploratory
trials. This might reflect increased working memory demands
associated with making an exploratory decision in a competitive
environment, with neurons in this region encoding past decisions and
payoffs for primates in a competitive game (Barraclough et al., 2004).
The e-greedy competitor would frequently have sampled bandits that
the participant might not have explored themselves. These types of
exploratory decision by the competitor might not have obviated the
need for the player to make their own exploratory decisions, but
would have increased the amount of information available when
doing so. The sharing of risk-taking, and the associated tendency of
the player to make exploratory decisions after low rewards, may also
help explain why we did not observe activity in FPC on exploratory
trials, as in the study by Daw et al. In their study, FPC activation on
exploratory trials was explained in terms of the additional cognitive
control required to override default exploitative tendencies. However,
in our task, the exploitative tendency on exploratory trials would be
less if preceding rewards had been lower, and so require less cognitive
control to override them (Peter Dayan, personal communication).
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In conclusion, our results support a model of competitive reward
learning in which the player generates neural representations of their
competitor's actions prior to outcomes becoming known, possibly in
readiness to initiate these actions. At the outcome of the competitor's
selection, we observed activities suggesting reward-based response
inhibition and the appraisal of alternatives, in relation to a learning
signal provided by the competitor's unexpected losses. In competitive
foraging, processes involving the mirror neuron, response inhibition
and reward systems may cooperate in supporting efficient reward
exploitation and loss avoidance.
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